Simulated annual changes in plant functional types and their responses to climate change on the northern Tibetan Plateau
نویسندگان
چکیده
منابع مشابه
Simulated impacts of land cover change on summer climate in the Tibetan Plateau
The Tibetan Plateau (TP) is a key region of land–atmosphere interactions with severe eco-environment degradation. This study uses an atmospheric general circulation model, NCEP GCM/SSiB, to present the major TP summer climate features for six selected ENSO years and preliminarily assess the possible impact of land cover change on the summer circulation over the TP. Compared to Reanalysis II dat...
متن کاملClimate Change and Water Use Partitioning by Different Plant Functional Groups in a Grassland on the Tibetan Plateau
The Tibetan Plateau (TP) is predicted to experience increases in air temperature, increases in snowfall, and decreases in monsoon rains; however, there is currently a paucity of data that examine the ecological responses to such climate changes. In this study, we examined the effects of increased air temperature and snowfall on: 1) water use partitioning by different plant functional groups, an...
متن کاملTibetan Alpine Tundra Responses to Simulated Changes in Climate: Aboveground Biomass and Community Responses
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive o...
متن کاملClimate change on the Tibetan Plateau in response to shifting atmospheric circulation since the LGM
The Tibetan Plateau (TP) is primarily influenced by the northern hemispheric middle latitude Westerlies and the Indian summer monsoon (ISM). The extent, long-distance effects and potential long-term changes of these two atmospheric circulations are not yet fully understood. Here, we analyse modern airborne pollen in a transition zone of seasonally alternating dominance of the Westerlies and the...
متن کاملLight-intensity grazing improves alpine meadow productivity and adaption to climate change on the Tibetan Plateau
To explore grazing effects on carbon fluxes in alpine meadow ecosystems, we used a paired eddy-covariance (EC) system to measure carbon fluxes in adjacent fenced (FM) and grazed (GM) meadows on the Tibetan plateau. Gross primary productivity (GPP) and ecosystem respiration (Re) were greater at GM than FM for the first two years of fencing. In the third year, the productivity at FM increased to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biogeosciences
سال: 2016
ISSN: 1726-4189
DOI: 10.5194/bg-13-3533-2016